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Photon Emission As a Random Event 
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The statistical properties of the random events that correspond to the emission 
or the detection of a photon spontaneously emitted by a single atom are dis- 
cussed. This statistics constitutes a full and nontrivial solution of the stochastic 
theory of random events. The results are most explicit for an atom with two 
relevant states. The formalism is also generalized to atomic models with non- 
degenerate states or with more than one driven transition. 
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1. I N T R O D U C T I O N  

A substantial  part  of van Kampen ' s  work is devoted to stochastic 
processes. (1) Most  often the basis of the stochastic nature o f  phenomena  is 
the molecular  structure of matter. In that  situation, fluctuations of a 
macroscopic  quant i ty  reflect the rapid variat ion of  the underlying 
microscopic state of the system. In  fact, a central goal of statistical 
mechanics is the construct ion of macroscopic  equat ions of  mot ion  by 
elimination of the rapid variations within the class of microscopic states. (2) 
Another  class of stochastic processes arises f rom the probabilistic nature of 
quan tum mechanics, which allows only statistical predictions for the out-  
come of  measurements.  For  this type of  process, the fluctuations in 
measured quantities do not  reflect variations in the state of the system. 

In quan tum optics, which deals with the interaction of photons  with 
matter,  stochastic processes play an impor tan t  part. A prime example is 
spontaneous  emission of photons .  In  the case of  one or a few a toms or  
molecules, quan tum  fluctuations in the number  of  emitted photons  or  in 
the time lapse between successive emissions are crucial. 
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In the present paper, I apply the stochastic theory of random events to 
the fluorescent emission of photons by a single atom. This problem has 
received much attention in the last decade. ~ 6) I shall demonstrate that the 
treatment becomes considerably more transparent when the concept of the 
waiting-time distribution is applied. Furthermore, I shall show that a 
slightly more formal treatment allows a direct generalization to the case of 
an atom in which more than two states are coupled by the radiation field. 

2. R A N D O M  EVENTS 

First I briefly review some elements of the stochastic theory of random 
events, which may be represented as dots on the time axis. (1'7) In sub- 
sequent sections I shall apply this theory to the specific case of photon 
counts, in particular, the photon emissions by a single atom in a radiation 
field. 

2.1. Distr ibut ion Function and Stat ist ics 

Basic to the description of random events are the distribution 
functions fn. These are defined by requiring that (~'3) 

f , ( t l ,  t2 ..... t~) dtl ...  dtn (2.1) 

is the probability for an event in the time interval It1, tl + dtl],..., and one 
in the time interval [tn, tn + dt ,] ,  for infinitesimal, nonoverlapping inter- 
vals. I assume that the events have a vanishing probability to coincide 
exactly, which implies that the functions fn contain no delta functions of 
the type 6 ( t i - t j ) .  Thus, the probability of having two events in an 
infinitesimal interval dt is at least of order (dt) 2. When N is the number of 
events in a time interval [0, T], the integrals of the distribution functions 
are simply related to the factorial moments 

by the relations 

sn = ( N ! / ( N -  n)! ) (2.2) 

sn= dtl dt2 . . . d tn fn ( t l ,  t2,..., tn) (2.3) 

When we introduce the probability PN for precisely N events in the count 
interval [-0,.T], the obvious relations 

sn= ~ p N N ! / ( N - n ) !  (2.4) 
N n 



Photon Emission As a Random Event 419 

between s, and PN may be inverted to the sum rules 

pN = ~ (--1)"S,+N/(N!n!) (2.5) 
n = 0  

These relations are particularly convenient in cases where the evaluation of 
J), and thereby of sn is easier than the evaluation of PN. 

Another convenient tool in the study of the number statistics is the 
generating function(l) 

G(/Z)=--((1--#)N>= ~ pN(1--#)N 
N = 0  

(2.6) 

(In order to avoid confusion, I remark that usually 1 - #  is taken as the 
argument of the generating function.) An expression for the factorial 
moments s, follows immediately after differentiating (2.6) n times with 
respect to #, and putting # equal to one. This leads to the alternative 
expansion 

G(#)= ~ s,(-#)"/n! (2.7) 
n = 0  

Clearly, the full number statistics {PN} is contained in the set of factorial 
moments {sn}, or alternatively in the analytic function G. 

2.2 .  S t a t i s t i c s  o f  D e t e c t e d  E v e n t s  

In practical cases, the occurrence of an event is detected with a finite 
probability ~, with 0 < ~ < 1. For instance, an emitted photon is usually 
detected by a photomultiplier with a probability ~, which reflects the 
restricted aperture and the limited quantum efficiency of the multiplier. 
When we introduce in analogy to (2.1) the distribution functions 
gn(t~, t2 ..... t~) for detected events, then we may write 

g,(tl, t2,..., i n ) =  ~nf,,(tl, t2 ..... tn) (2.8) 

and likewise the factorial moments r, of these detected events are related to 
sn by 

r, = C~nSn (2.9) 

These equations are subject to the assumption that the detection efficiency 
is not affected by a previous detection, so that the detector has no 
appreciable dead time. The generating function F(#) specifying the statistics 
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of the number of detected events is, then related to the generating function 
(2.7) by 

F(#) = G(c~#) (2.10) 

An interesting feature of this relation is that the number statistics 
{PN} of the events or the number statistics {qN} of the detected events 
may be expressed as derivatives of qo with respect to e.(6) According to the 
definition of F and G, we obtain the identities 

po = a(1),  qo=r(1)=a(et) (2.11) 

Since PN and qN may be expressed as derivatives of G and F with respect to 
#, we easily find the general expression 

qu = (--o~)N (d/dcQU qo/N! (2.12) 

Substituting c~ = 1 in the right-hand side of (2.12) yields expressions for PN. 
This demonstrates that knowledge of the probability qo for detecting no 
events in the count interval as a function of the efficiency :~ is suffcient to 
determine the complete number statistics {qN} and {PN}. 

2.3. Waiting-Time Distribution 

A final quantity of practical interest is the probability distribution w(t) 
for the time one has to wait for the first event to occur, after time zero. This 
waiting-time distribution is directly related to the probability po(T) for 
having no events at all during [0, T]. Since during this interval there either 
was no event or at least one, we may write 

fodt  w(t) + po(T) = 1 (2.13) 

After differentiating (2.13 ), we find (1) 

d 
w(T) = - ~ Po(T) (2.14) 

One notices that the waiting-time distribution w(t) is an actual probability 
distribution that is normalized to unity when at least one event occurs with 
certainty for any positive time. A similar relation holds for the waiting-time 
distribution for the first detection. 

I emphasize that the relations given in this section are generally valid, 
regardless of the nature of the events and of the mechanism causing their 
recurrence. 
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3. P H O T O E L E C T R O N  C O U N T I N G  

In a common experimental situation, photon counting is basically the 
counting of photoelectric pulses that are generated by a weak light field in 
a photomultiplier. The photopulses correspond to the release of a 
photoelectron and reflect the arrival of a photon. Ideally, the emission rate 
of the photoelectrons is proportional to the intensity I(t).  For convenience, 
we express the intensity in units of photoelectric counts per unit time. 

In a classical picture, where the intensity I ( t )  has a well-defined value 
at any instant, irrespective of the measurement, the obvious form for the 
distribution function gn( t l ,  t 2 . . . . .  t n )  of detected photoelectric counts is 

gn( t l ,  t2 ..... tn) = ((I(t l)I(t2)" '" I ( tn ) ) )  (3.1) 

where the double brackets ((.)) denote an average over the stochastics of 
the fluctuating intensity. For a count interval [0, T], the factorial moments 
are given by 

with 

r n = ( ( P ( T ) N ) )  (3.2) 

P( T)  = I( t ) dt (3.3) 

the integrated intensity. The probabilities qN for observing N photocounts 
in the interval are then (8) 

qN = (( [ P ( T ) j N  e x p [  - P(T)]  ) ) IN!  (3.4) 

as we easily find after using the generating function 

F(kt) = ((exp[ - /~P(T)]  )) (3.5) 

One notices that the distribution {qN} has the nature of a stochastic 
average over Poisson distributions. When the intensity does not fluctuate, 
P(T) is not a stochastic quantity, and the number of counts is described by 
the Poisson distribution with the mean value P(T ) .  Fluctuations cause 
r 2 -  r21 to be positive, since 

r 2 - r 2 = ( ( P ( T ) 2 ) )  - ( ( P ( T ) ) ) 2  = A p 2  (3.6) 

which is the variance of P. This means that the variance of the number N 
of photocounts obeys the identity 

( N  2) - ( N ) 2 =  ( N )  + A P  2 (3.7) 
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so that the variance of the photocounts is larger than for a Poisson 
distribution with the same average number. 

Similar expressions can be obtained when the quantum mechanical 
nature of the radiation field is accounted for. The main difference is that 
the order of the operators must be properly prescribed. For  instance, 
Eq. (3.4) for the number statistics remains valid when we substitute the 
proper operator for the intensity, which is proportional to the 
photon-number operator Z b+b, and when both time ordering (higher 
times to the left) and normal ordering (creation operators b § to the left) 
are imposed in each term after expansion of the exponential. ~ In that case, 
the arguments leading to (3.6) no longer hold, and the term r 2 -  r~ may be 
negative. Put in other words, one may say that the normally ordered 
variance of P is not necessarily positive. Hence, a photocount statistics with 
a variance that is smaller than in a Poisson distribution with the same 
average number cannot be simulated by a classical incident field where 
fluctuations are used to model the quantum fluctuations. In the next 
section we shall encounter several simple cases with such a sub-Poissonian 
photocount statistics. 

4. F L U O R E S C E N C E  OF A TWO-STATE ATOM 

In this section I shall describe the correlated statistics of the 
fluorescent photons emitted by an atom in a monochromatic radiation 
field. In fact, this problem has only recently been fully treated. Most treat- 
ments took as their starting point the quantum version of Eq. (3.5). I wish 
to demonstrate that an easier and more transparent description results 
when one uses the concept of the waiting-time distribution w(t). Further- 
more, this formalism allows a direct generalization to cases where more 
than one transition is driven by external fields, so that various spectral 
lines in the fluorescence spectrum appear. 

4.1. Evolution Equation 

Consider an atom in a monochromatic radiation field with a frequency 
co that is near an atomic transition frequency coo. This transition couples 
the ground state Ig)  to an excited state le), and radiative transitions to 
other states are assumed to be negligible. Moreover, the two coupled states 
are treated as nondegenerate. The equation of motion of the reduced 
density matrix p of the atom alone is, to an excellent approximation, (1~ 

dp/clt = - K p  - (i/h)[H(t), p] (4.1) 
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where F is the effective relaxation operator for spontaneous decay, and 
where the Hamiltonian H(t)  is 

H(t)  = le)  Ee<e[ + [g) E g f g [ - - # E ( t )  (4.2) 

with E e and Eg the atomic level energies, # the atomic dispole operator, 
and E the electric component of the radiation field. The dipole has non- 
diagonal elements only, and the field is described as a monochromatic 
classical field. 

I introduce a transformed density matrix (T(t) for the atom by the 
definitions 

(Tee ~ Pee~ (Teg ~ Peg Ci~ 
(4.3) 

(Tgg ~ Pgg~ (Tge = Pge e --loot 

and ignore as usual the rapidly oscillating terms in the resulting equation 
of motion for (T. The elements of (T obey the equations 

d i t2  

d i t 2  

(1 ) i 
dt(Tex= - ~ A - i A  Geg-l-~'~(Ggg--(Tee ) 

dt (Tg~ = - A + iA (Tge + ~ t2(ae~ - (T~g) 

(4.4) 

where A = o  J - c o  o is the detuning of the radiation frequency from 
resonance, and where t2 is the Rabi frequency, defined as the dipole matrix 
element times the field amplitude divided by h. These equations have the 
same general form as the Bloch equations for the magnetic moment of a 
spin 1/2 under the influence of a static and a radiofrequency magnetic field, 
as in magnetic resonance experiments. For these reasons, Eqs. (4.4) are 
often termed the optical Bloch equations. 

4.2.  P h o t o n  D i s t r i b u t i o n  F u n c t i o n s  and  W a i t i n g  T i m e  

For a given solution a(t) of (4.4), the rate of spontaneous emission is 
equal to A(Tee(t), and this quantity plays the role of the fluorescence inten- 
sity ( ( I ( t ) ) ) .  Obviously, spontaneous emission of a photon is accompanied 
by a transition of the atom from ]e) to lg) ,  so that immediately after an 
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emission the atom is with certainty in the ground state. When we start a 
count interval at an instant t = 0  where emission just took place, or 
where the field was just switched on, we may write for the one-photon 
distribution function 

f l ( t ) =  Aaee(t) (4.5) 

which is the probability density for another photon emission at time t 1. 
The initial condition is that agg(0)=0, and the other matrix elements 
vanish at t = 0. After this emission at time t, the atom has returned to the 
ground state, and the probability for a subsequent emission builds up in 
the same way as after the initial time zero. In this way, it is easy to 
understand that the n-fold distribution function f ,  for subsequent photon 
emissions at time tl < t2 < .- �9 < t, is equal to (3'5'6) 

f . ( t , ,  t2 ..... t . ) = f l ( t . - t .  , ) f l ( t . _ l - t  . 2 ) . . . f l ( t 2 - t l ) f l ( t l )  (4.6) 

It is now simple to derive the full photon statistics, at least in Laplace 
transform. (6) I denote as 

f , ( v )  = [ ~ dt e-V~f,(t) (4.7) 
J o  

the Laplace transform of f l ,  and I similarly introduce the Laplace trans- 
forms of the factorial moments s,(t) ,  the number probabilities pu(t ) ,  and 
the generating function G(#, T). After using (4.6), (4.7), and (2.3), we 
obtain 

2.(v) = n.T [ f l ( v ) ] "  (4.8) 
t~ 

This gives for the Laplace transform of the generating function (2.7) 

1 1 
(~(#, v )=  (4.9) 

U 1 "~-~?l(t~) 

which gives, after use of (2.6), for the number probabilities 

PN(v) - (4.10) 
v [ I  + f , ( v ) ]  N+I  

For completeness we also give the waiting-time distribution. If we take the 
Laplace transform of (2.14), and if we use that po(0)= 1, p 0 ( ~ ) = 0 ,  we 
find 

L ( v )  
r  - -  (4.11) 

1 + f , ( v )  
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4,3. O p e r a t o r  Expressions 

It is illuminating to give a formal operator expression for f]  and w. 
This will also allow us to generalize the results of this section. First we 
write the optical Bloch equations (4.4) as an operator equation 

da/dt = La  (4.12) 

for the density matrix a. Next we separate the evolution operator L 
according to 

L = L o +  S (4.13) 

where the action of Lo is defined by the right-hand sides of (4.4), with the 
first term of the right-hand side of the second equation omitted. This omit- 
ted term, which defines the operator S, describes the gain in the 
ground-state population due to spontaneous emission. If one introduces the 
projectors 

Pe = le) (e l ,  P g =  I g ) ( g l  (4.14) 

then S is expressed by its action on a density matrix a 

Sa = A P  e Tr aP e (4.15) 

In the quantum electrodynamic description of spontaneous emission, this 
~)perator gives the effect on the atom at instants where the photon number 
of the fluorescence modes is increased by one. Hence the operator S may be 
properly called the spontaneous emission operator. The terms proportional 
to the spontaneous decay rate A contributing to L o describe the decay of 
the atomic density matrix pertaining to a fixed number of fluorescent 
photons. (4) 

From the expression (4.5) for f~(t)  we find immediately the formal 
expression 

f~(t) = Yr S eCtPg (4.16) 

since in Eq. (4.5) the initial value for a was taken to be Pg. This form 
(4.16) reveals the physical significance off l ( t )  as the probability density for 
a photon emission at time t, with the condition that the atom was in the 
ground state at time zero. A similar form may be found for the 
waiting-time distribution w(t). From the mere fact that Lo describes the 
evolution of a in a period where no spontaneous emission occurs, one may 
anticipate the result 

w(t)  = Tr S eL~ (4.17) 
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This is confirmed when we take the Laplace transform of (4.16), and when 
we use the formal expansion in powers of S 

1 1 1 1 
v - L - v  Lo ~-v---~o S (4.18) 

_ v_Lo + "'" 

From the explicit action of S as defined in Eq. (4.15), we observe that the 
Laplace transforms of (4.16) and (4.17) are related by the geometrical 
series 

f,(v) = re(v)  + [ r e ( v ) ]  = + [ r e ( v ) ]  ~ + . . .  (4.19) 

This result is equivalent to (4.11), which confirms that (4.17) is indeed a 
correct expression for w(t). The expansion (4.19) simply indicates that a 
photon emitted at a selected instant of time t may be the first, or the 
second, or the third ..... after the initial time zero. This relation (4.19) 
between the function f~ and the waiting-time distribution w holds generally, 
provided that the state of the atom directly after a spontaneous emission 
is uniquely defined. This is the case when the lower state I g} is 
nondegenerate.(12) 

In the present case without external perturbations such as collisions or 
light fluctuations, the evolution of w is easier to calculate than that off~.  
The reason is that the evolution operator L o appearing in (4.17) transforms 
a projector Pg into another operator of the form llp(t)}(~(t)[.  Therefore, 
only the evolution of state vectors is needed for the evolution of w, whereas 
the operator L, which specifies f~, operates essentially on the Liouville 
space of density matrices. In more general cases this is also true for w. 

Now that we have definitely identified L 0 as the evolution operator 
between spontaneous emissions and S as the operator describing spon- 
taneous emission, it should be obvious that the density matrix 

a(t) = eLtpg (4.20) 

may be separated as 

a ( t ) =  ~ aN(t) (4.21) 
N = 0  

where a N is the contribution to a from the evolution history in which 
precisely N photons have been emitted. Therefore o- N is the Nth order of 
(4.20) in the expansion in powers of S. In Laplace transform this gives 

I (S  I ~ ) N p g  (4 .22)  
~N(V)--I)--Lo\ v--LoJ 
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Obviously, the trace of (4.20) is the Laplace transform ofpN(t), and we find 

with 

~N(v)  = ~ o ( V ) [ ( ~ ( v ) ]  N (4.23) 

1 
/~o(V) = Tr 7 -  Pg (4.24) 

v ~0 

Equation (4.23) reflects the fact that in the case of N photon emissions in a 
count interval [0, T], we have to wait N times for the first next photon, 
and in the remaining time after the Nth emission, no photon emission 
should occur. 

4.4. Explicit Expressions 

It is not difficult to obtain explicit expressions for the Laplace trans- 
form off1 ,  after taking the Laplace transform of Eqs. (4.4) with the initial 
condition ~(0 )=  Pg. Then f l (v)  is equal to the Laplace transform of Aoee. 
The result is (H) 

1 �89 + �89 (4.25) 
J?l(V) = v (v+A)[(v+�89 

Likewise, we obtain an expression for ~(v) if we omit the first term on the 
right-hand side of the second equation (4.4), which is equivalent to 
omitting the operator S. The result is (13) 

�89 + �89 ) 
W(V)= v(v+A)[(~)+�89 ] _+. g.22(t~ + �89 (4.26) 

One readily checks that Eq. (4.11) holds. 
Figures 1 and 2 present the time behavior of f~ and w for resonant 

excitation (A = 0 )  and for two values of f2/A. These plots illustrate that 
both f~ and w vanish for time zero, which reflects that after an emission at 
time zero the atom needs a finite recovery time before a subsequent 
emission can occur. The photons seem to repel each other in time and have 
a reduced probability to follow each other within a time lapse that is 
smaller than both A-1 and (2 -1. This is the phenomenon of photon 
antibunching. ~ For  a Rabi frequency Q that is larger than A/2, both f~ 
and w display oscillations at this Rabi frequency. For  smaller values of ~2, 
the atom is effectively overdamped. For  larger times t > A - 1, f~ approaches 
the value of the steady-state intensity, since the memory of the initial 
condition has died.out. The waiting-time distribution w is normalized to 
unity, and it approaches zero for t > A -  1 
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Behavior of the one-photon distribution f l  for excitation at resonance. (a) g? = �89 (b) 
g2 = �89 J17. 

The antibunching property of the emitted photons can easily lead 
to sub-Poissonian statistics, (3) in the sense mentioned in the previous 
section. As is obvious from Eq. (4.6) for the n-fold distribution function, 
the antibunching does not arise merely at time zero but it gives a zero 
probability density when two emission times ti and ti+l approach each 
other. Hence this remains true when the atom has resided many lifetimes in 
the excited state, so that the density matrix a has reached its steady state. 
This should remind us of the essential statistical significance of the density 
matrix. The observation of an emitted photon at time ti constitutes a quan- 

w/A 

Q4 

Q2 

I I I I 

2 4 6 8 At 

Fig. 2. Behavior of the waiting-time distribution w for the same situations as in Fig. 1. 
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turn mechanical measurement, which has the effect of projecting the atom 
in its ground state, even though the form of the density matrix tells us that 
the atom is in a superposition state. 

4.5. D e t e c t e d  Photons  

Suppose that each emitted photon has a probability ~ to be detected 
by a photomultiplier. The arguments of Section 2.2 apply directly, and the 
n-fold distribution function g, of detected photons is simply c~ n times the 
function fn specified in (4.6). Hence g,  factorizes into a product of n 
functions gl ,  with 

gl(t) = c~ Tr S eL'Pg (4.27) 

This determines completely the correlated statistics of photon detections, 
and in full analogy to Section 4.2, we find that the number statistics {qu} 
of the detected photons and the waiting-time distribution u for the first 
detection are given in Laplace transform by the right-hand side of (4.10) 
and (4.11) when we replace f l  by 

gl(v) = c~f l(v) (4.28) 

Hence, by using (4.28) and the inverse equation of (4.11), we obtain the 
relation between the waiting-time distribution u(t) for the first detected 
photon and the waiting-time distribution w(t) for the first emitted photon, 
both in Laplace transformation. The result is 

h(v) = (4.29) 
1 -  ( 1 - ~ )  ~(v) 

The operator notation for u(t), in analogy to (4.17), is 

u(t) -- ~ Tr S exp { [L o + (1 - e) S ] t  } Pg (4.30) 

5. F L U O R E S C E N C E  OF M O R E  C O M P L E X  A T O M I C  M O D E L S  

The formalism of the previous section is by no means restricted to the 
simple two-state model of an atom. In this section I shall briefly discuss 
several more complicated level schemes. 

5.1. W e a k  Coupl ing  to A n o t h e r  L o w e r  S t a t e  

We consider the level scheme sketched in Fig. 3, where the excited 
state ]e) can decay not only to the ground state ]g), but also to another, 

822/53/1-2-28 
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Fig. 3. Level scheme with a weakly coupled third state. Solid lines indicate stimulated 
transitions, broken lines indicate spontaneous decay. 

lower state [g').  The spontaneous emission rate from [e) to [g ' )  is called 
A'. The Bloch equations for this modified level scheme follow from 
Eqs. (4.4) if we substitute A + A' for A in the equations of motion for aee, 
aeg, and age. The equation for ~gg [-the second equation in (4.4)] remains 
unchanged. Alternatively, we can say that the evolution equation (4.12) 
still holds with the separation (4.13) for the evolution operator L, where S 
still has the same form (4.15), but now we replace A by A + A '  in Lo. Then 
the formal results (4.6), (4.16), and (4.17) remain valid with this modified 
operator L0 and L, and also the results (4.23) and (4.24) for the photon 
number statistics hold. The explicit expressions (4.25) and (4.26) for f,. and 

are altered, although their relation (4.11) still holds. We now find 

�89 + �89 + �89 
~(v)=v(v+A+A,)[(v+1A+�89189189 (5.1) 

From the scheme in Fig. 3 it is clear that the atom will always end up 
in the state [g').  The solution of the modified Bloch equations decays to 
zero, and eventually the population ag,g, of the third state should go to one, 
whatever the normalized initial condition was. This population is governed 
by the evolution equation 

d 
dt Gg,g, = A' Gee (5.2) 

Suppose now that the transition from ]e) to [g ')  is very weak, so that 

A' ,~ A (5.3) 
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This is the case when this transition is dipole forbidden. Then the 
fluorescence will eventually stop, but only after the emission of many 
fluorescent photons. 

We assume that at time zero the atom enters the field in its ground 
state I g) .  If we look at the fluorescent emission on the slow time scale of 
the weak transition, we see a continuous flow of light with a time-depen- 
dent intensity. In order to decide what this time-dependent intensity will 
look like, we first consider the photon distribution functionft(t) .  In view of 
the large difference in time scale for the rapid radiative transitions between 
le) and Ig),  and the slow decay from le) to Lg'), the behavior of f1  
becomes particularly simple. For short times t ~ A '-1, there has been no 
time for spontaneous decay to the state Ig ') ,  andf l ( t )  must be the same as 
in the case of a two-state atom, which has (4.11) as its Laplace transform. 
This function approaches the limiting value 

with 

lira f l ( t ) =  lira v f l ( v ) = A p e  (5.4) 
g~oo v~O 

~2:/4 
Pe = A 2 -t- A2/4 + (22/2 (5.5) 

the steady-state fraction of excited atoms in the two-state model. By 
summing the evolution equations for (Tee and (Tgg, w e  find the equation 

with 

d 
dt ns = --At(Tee (5.6) 

n, = Gee q- (Tgg (5.7) 

the total population of the strongly coupled states. For times t >> A- : ,  the 
strong coupling forces (Tgg and ace to their steady-state ratio, so that we 
may write 

(Tee=Pens (5.8) 

Substituting (5.8) in (5.6) leads to a simple exponential decay of n s at the 
rate A'pe.  In fact, this is a simple case of elimination of rapid variables, 
which is a topic to which van Kampen has much contributed. (2) The 
long-time behavior for t > A  -~ off~ is therefore 

f~ ( t )  -= A p e e  A'pet (5.9) 

Hence the one-photon distribution function has a slow exponential 
decay, and it may be tempting to take this as proof that the fluorescent 
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intensity at the slow time scale also displays this exponential decrease to 
zero. However, we should recall that f l ( t )  is a probability density, which 
can only be safely compared with experiment if we consider either an 
ensemble of many atoms or, equivalently, many runs with a single atom. 

In order to decide what a typical single measurement of the 
time-dependent fluorescent intensity will look like, it is instructive to look 
at the waiting-time distribution, which is determined by (5.1). The 
short-time behavior of w(t) corresponds to large values of v, where the 
contribution of A' is very small. Hence the small-time behavior of w differs 
negligibly from the two-state case. However, the time integral of w is equal 
to the limit of �9 for v ~ 0, and we find 

fo ~ A dt w(t) - A + A - -  (5.10) 

which is slightly smaller than unity. This means that at each photon 
emission there is a small probability A'/(A + A')  that this photon has been 
the last one and that the fluorescence has stopped. On the other hand, 
when any photon is emitted, the distribution of the time lapses between this 
emission and the next one is the same as after the very first photon. This 
implies that the time-dependent fluorescence has an intensity that has the 
same value Ape as in the two-state case, until it suddenly stops at a random 
instant. This random instant has the rate A'pe. Only when we observe a 
large number of atoms will the total fluorescence exhibit the exponential 
decay at the rate A'pe. In this case, the observation of the fluorescence 
intensity constitutes a measurement that decides whether or not the atom is 
still in the strongly coupled states. The distinction between f l ( t )  and the 
time-dependent intensity in a single run is illustrated in Fig. 4. This random 

I 

0 1. 2. 

A ' t  

Fig. 4. Plot of one-photon distribution fl(t) and a typical single run of the time-dependent 
intensity of fluorescence for the three-state system. 
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termination of fluorescence is in fact a simple example of a quantum 
jump. (15) 

The same type of reasoning can also be applied in the case that the 
weak transition between le} and Ig'} is also driven by a radiation field. (~6~ 
Then the stream of fluorescent photons can be switched on again by the 
absorptive excitation on the weak transition. The result is a random 
switching on and off of the fluorescent intensity on a macroscopic time 
scale. This phenomenon has received much attention theoretically. (17) It has 
also been observed experimentally for a single atomic ion in a radio- 
frequency trap. (18~ 

5.2. Degenerate States 

In most practical cases, the atomic levels coupled by a radiation field 
are degenerate, and then the Zeeman substates must be accounted for. For  
linearly polarized radiation, we get transitions as sketched in Fig. 5. This 
will complicate the explicit form of the Bloch equations (4.4). (19) When we 
indicate with the indices g and e the multiplets of states in the two levels, 
the quantities aee, aeg, etc., are submatrices. Nevertheless, the rough struc- 
ture of (4.4) is retained. The terms with ~ should now contain a mul- 
tiplication with a dipole submatrix. In particular, the formal separation 
(4.13) of the evolution operator remains useful. The spontaneous emission 
operator S maps the excited-state submatrix 6ee onto the ground-state sub- 
matrix ~gg and gives the gain in Ogg due to spontaneous emission of an 
atom in an excited state described by the submatrix aee' 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

I / 
I / / 

I / 
I ii 

Fig. 5. Indication of stimulated (solid lines) and spontaneous  (broken lines) transitions in a 
system with two degenerate levels. The indicated states represent Zeeman sublevels. 
Stimulated transitions with polarized light represent more restrictive selection rules than do 
spontaneous transitions. 
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The factorization (4.6) of the distribution functions no longer holds 
when the ground level is degenerate. Nevertheless, many results of Sec- 
tion 4 can be easily generalized to this case, and I mention some examples. 

The distribution function fn takes the general operator form (for tl < 
t2 < �9 �9 �9 < tn) 

fn(t l ,  t2,..., t n )=Tr  SeC("- '~  .. .eL('2-'~)SeC~'ao (5.11) 

where o0 is the initial state at time zero. The waiting-time distribution for 
the first photon after time zero is still given by (4.17) when we replace Pg 
by a 0. The photon number probabilities are given by 

/~N(V) = Yr ~ (S ___~l '] No0 (5.12) 
\ v - L o J  

but the factorization (4.23) is not always valid. A similar relation holds for 
the factorial moments 

1 / 1 \ "  
gn(v) = n! Tr-~--S-i ~ S-~-S-~) ao (5.13) 

These relations may serve as a starting point for explicit calculations 
in specific situations. At the same time, they are useful in themselves to 
illustrate the interdependence of the various quantities concerning the 
correlated statistics of photoemissions. Similar results for the statistics of 
detected photons with a limited efficiency ~ can be directly found with the 
methods indicated in Section 4.5. The formalism also serves to answer more 
complex questions, which involve not only the number or the instant of 
photon emissions, but also the state of the atom. For instance, the density 
matrix 

( T N  - -  v - ' L o  Sv_--2--~o Go (5.14) 

may serve to calculate the probability that precisely N photons have been 
emitted and the atom at time t is in a certain state. Thus, this quantity is a 
density matrix normalized to a number probability. 

5.3. V a r i o u s  T rans i t ions  

I now consider an atom with more than two levels that are coupled 
by radiative transitions. An example is indicated in Fig. 6. Several 
monochromatic radiation fields drive various transitions. By making a 
transformation similar to (4.3), the transformed density matrix o obeys an 



Photon Emission As a Random Event 435 

\ \  
/ \ 

" 
/ 

/ 
/ 

\,, I I 

I 
I 

I 

Fig. 6. Example of a system with several driven transitions (solid lines). Fluorescent 
emission can occur on four transitions (broken lines) indicating spontaneous decay. 

evolution equation like (4.12) with a time-independent evolution operator. 
This is possible in many cases of practical interest. (The condition is that 
each pair of states is coupled by not more than one frequency, and in the 
scheme of levels connected by driven transitions there are no closed loops.) 
In the resulting evolution equations for the diagonal terms, spontaneous 
emission from higher levels give rise to gain terms, just like the first term in 
the second equation (4.4). These terms can be denoted by operators 
S(i  ~ j) ,  with 

S(i --* j )  = Ai jP j Tr r (5.15) 

Here i and j indicate states, A sj is the spontaneous decay rate from state ]i) 
to the lower lying state [ j ) ,  and Pi and Pj are projectors on these states. 
Each pair i ~ j of states corresponding to a spontaneous transition gives 
rise to a line in the fluorescence spectrum. The transition frequencies are 
supposed to differ by a value large compared with radiative transition 
rates, so that the spectral lines can be resolved within a time Am-I  that is 
negligible compared with the radiative lifetimes. Then the different photons 
can be assigned to a transition in an essentially instantaneous way and we 
can forget about the inherent time uncertainty. 
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We label the transition i ~ j by the index fi and we write the evolution 
equation for the transformed density matrix a in the form 

d 
- - a =  La (5.16) 
dt 

with 

L = L 0 + ~ S~ (5.17) 
B 

where L0 contains no gain terms, due to spontaneous emission. Then we 
can describe in the same spirit as in Section 4 the statistical properties of 
the emitted photons of the various transitions. For instance, when 
fn(tlfl2x; t2fi2;...; t,,fln) is the probability density for the emission of a 
photon on the transition fll at tl ..... and on the transition fin at t~, we find 
the formal result for tl < t2 < '.- < tn, 

f , (  t,fll ; t2f12;...; t~fl,) 
= Tr S~e L(t"-t'-~)... S~2e c(t2 tl)S/~eCtlPg (5.18) 

where it is assumed that the atom entered the fields at time zero in the 
ground state. If we replace L by Lo in (5.18), the resulting expression 
denotes the probability density for a fll photon at time t~, a fi2 photon at 
time te ..... a fin photon at time tn, and no other photons between time zero 
and t~. As a result of the specific form (5.15) for the operators Sp, the 
expression (5.18) factorizes into functions of the type 

f~(fl'fl, t) = Tr S~,eCtPjB (5.19) 

which is the probability density for the emission of a photon in the trans- 
ition fl' at time t after an earlier emission of a photon on the transition fl at 
time zero. This condition ensures that the evolution on time zero starts at 
the lower state IJ~) of the transition ft. Likewise, we obtain the expression 

w(fl'fl, t) = Tr Sa,eL~ (5.20) 

for the probability density that after an emission of a fl photon at time zero 
one has to wait a time t for the next photon and that this next photon 
occurs on the transition fl'. After these examples, the reader will have no 
difficulty in giving analogous expressions for probability densities of any 
type (photon emissions at given instants on a specified transition, or, 
irrespective of the transition, with or without the condition of no photon 
emissions in between). 
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The two-label functions fl(/~'//) and w(/~'/~) form matrices with a 
dimension equal to the number of spontaneous transitions. The relation 
(4.11) may now be generalized into a similar relation between the Laplace 
transform of these matrices. Denote the matrices F(t) and W(t) by the 
matrix elements 

t), = w(p'p, t) (5.21) 

Then one proves after generalizing the arguments of Section 4 

(5.22) 

Formal expressions for the mixed number statistics p({n~}) can easily be 
found from the general results. 

6. C O N C L U S I O N S  

I have demonstrated that the statistical properties of spontaneous 
photon emission by a single atom can be accurately and systematically 
described by the stochastic theory of random events. The distribution 
functions can be evaluated explicitly in practical cases, which gives rise to 
closed analytical expressions for the number statistics. At the same time the 
close connection between these distribution functions and the waiting-time 
distribution is recognized as resulting from the fact that the atomic state 
after a photon emission is well determined. From the point of view of 
quantum mechanical measurement theory, the detection of a photon may 
be regarded as a measurement of the atomic energy level, where the 
vacuum of the radiation field is part of the measurement device. The obser- 
vation effectively interrupts the coherent oscillation of the atomic dipole, 
which can only be understood in terms of a superposition state. 

The formalism developed for a two-state atomic model allows 
generalization to situations where the coupled levels are degenerate or 
when more than two states are coupled by the presence of several 
monochromatic fields. Each of these cases is highly relevant in actual 
experimental situations. 
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